Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37623574

RESUMO

In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and cachaça per year using selected Saccharomyces cerevisiae industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five cachaça industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths. Our results show that only two strains (one fuel-ethanol and one cachaça yeast) have amplification of genes encoding invertase, with high specific activity. The other industrial yeast strains had a single locus (SUC2) in their genome, with different patterns of invertase activity. These results indicate that invertase activity probably does not limit sucrose fermentation during fuel-ethanol and cachaça production by these industrial strains. Using this knowledge, we changed the mode of sucrose metabolism of an industrial strain by avoiding extracellular invertase activity, overexpressing the intracellular invertase, and increasing its transport through the AGT1 permease. This approach allowed the direct consumption of the disaccharide by the cells, without releasing glucose or fructose into the medium, and a 11% higher ethanol production from sucrose by the modified industrial yeast, when compared to its parental strain.

2.
Mem Inst Oswaldo Cruz ; 115: e200401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146242

RESUMO

BACKGROUND: Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene. OBJECTIVE: This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata. METHODS: Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection. FINDINGS: The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice. MAIN CONCLUSIONS: The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.


Assuntos
Candida glabrata/genética , Trealase/metabolismo , Virulência/genética , Animais , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Candida glabrata/fisiologia , Candidíase , Deleção de Genes , Genes Fúngicos , Hidrolases , Camundongos , Trealase/genética , Trealase/fisiologia , Trealose/análise , Virulência/fisiologia
3.
Mem. Inst. Oswaldo Cruz ; 115: e200401, 2020. graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135257

RESUMO

BACKGROUND Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene. OBJECTIVE This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata. METHODS Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection. FINDINGS The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice. MAIN CONCLUSIONS The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.


Assuntos
Animais , Camundongos , Trealase/metabolismo , Virulência/genética , Candida glabrata/genética , Trealase/fisiologia , Trealase/genética , Trealose/análise , Virulência/fisiologia , Candidíase , Deleção de Genes , Candida glabrata/fisiologia , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Genes Fúngicos , Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...